行业信息

  •   远程网络教育是一种新兴的教育模式,自1999年以来,教育部批准如清华大学远程教育,对外经济贸易大学远程教育学院等68所普通高校学校开展现代远程教育试点工作,允许上述试点高校在校内开展网络教学工作的基础上,通过现代通信网络,开展学历教育和非学历教育。对达到本、专科毕业要求的学生,颁发高等教育,电子注册后,国家予以承认。

    网店第2年
    35038557
  • 普通高等教育五大学历教育是国家教育部最为正规且用人单位最为认可的学历教育,学历代码和学历层次也是按照上述顺序所编主要包括全日制普通博士学位研究生、全日制普通硕士学位研究生(包括学术型硕士和专业硕士)、全日制普通第二学士学位、全日制普通本科、全日制普通专科(高职).这五大类学历教育是国家教育部最为正规且用人单位最为认可的学历教育,学历代码也是按照上述学历层次所编

    网店第2年
    35038557
  • “学历教育”是根据国家教育部下达的招生计划录取的学生,按教育主管部门认可的教学计划实施教学,学生完成学业后,由学校颁发国家统一印制的和学位证书。与之相对的“非学历教育”是指各种培训、进修,完成学业后,由培训部门颁发相应结业证书。“学历教育”的含金量高,其中学历教育中普通高等教育五大学历教育是国家教育部最为正规且用人单位最为认可的学历教育,学历代码和学历层次也是按照上述顺序所编

    网店第2年
    35038557
  • 普通高等教育五大学历教育是国家教育部最为正规且用人单位最为认可的学历教育,学历代码和学历层次也是按照上述顺序所编主要包括全日制普通博士学位研究生、全日制普通硕士学位研究生(包括学术型硕士和专业硕士)、全日制普通第二学士学位、全日制普通本科、全日制普通专科(高职).这五大类学历教育是国家教育部最为正规且用人单位最为认可的学历教育,学历代码也是按照上述学历层次所编

    网店第2年
    35038557
  •  远程学习可以灵活地支配时间,并且不受任何限制,只要具备基本上网条件即可实现。学习过程是个体行为(初学阶段)到群体行为(讨论阶段)再到个体行为(自测)。与传统学习过程——群体行为(教师授课阶段)到个体行为(作业考试)比较,突出了个体作用。这一过程不是简单的形式变化,而是为个性化素质教育创造条件。突出个性意味着个人创新,由此形成的思维灵活性及思维表达新颖性是传统授课方式达不到的。传统授课方式使中学生的思维活动被约束在教师对知识建构之上

    网店第2年
    35038557
  • 香港亞洲商學院成立于2003年,是經香港特區政府批準註冊成立的一所從事高等教育、研究生課程、遠端教育、學術交流及管理咨詢服務的學術機構。香港亞商以傳統教學和遙距教學相結合見長,遍布大中華區的在讀學員約兩千位左右,學員廣泛分佈於香港、澳門、臺灣、東南亞及中國大陸。


    立足香港,面向亞洲,學院為各地學子提供:MBA課程、EMBA課程、本科課程、高級進修課程、國際職業教育等課程。


    深圳在职MBA,东莞在职MBA,广东在职MBA,每一个人读MBA都肯有不同的理由,概括起来包括接受更广博、更系统的工商管理知识培训,提高能力;能有更广阔的职业生涯发展空间;能建立更广泛的人际关系网等。当然,其中还有一个很重要的因素,就是学习MBA所带来的回报,而且这个问题MBA学生考虑比非MBA专业的学生更多一些。因此,对于想读MBA的人来说,都会考虑这样一个问题,究竟值不值得投资去读MBA。


    香港亚洲商学院是经香港特区政府批准注册成立的一所从事工商管理高等教育、学术交流及文化活动的高等学府。亚商以传统教学和遥距教学相结合见长,学员广泛分布于香港、澳门、台湾、东南亚及中国大陆。


    基础课程:


    《管理心理学》、《组织行为学》、《管理经济学》、《人力资源管理》、《战略管理》、《财务会计》、《营运管理》、《企业文化管理》、《MBA联考辅导》、《营销管理》


    专业课程:


    《融资、并购与公司治理》、《企业风险与危机管理》、《企业法律实务》、《税务与纳税筹划》、《变革与创新》、《创业学》、《经典案例》、《管理信息系统》、《国际商务》、《沟通与领导艺术》、《数据、模型与决策》、《资本运营与决策》、《项目管理》


    远程MBA班:商学院配送12本书籍+500G移动视频自修,学制一年,MBA远程班面向全国招生,欢迎全国的企业高管报读。


    学习后可以获得:香港亚洲商学院颁发国际版MBA硕士


    面授班上课地点:


    深圳班:深圳市南山区虚拟大学园亚商学院基地


    东莞班:东莞市松山湖高薪区亚商学院基地


    佛山班:佛山市禅城区绿岛湖亚商学院基地


    广州班:广州市番禺区番山创业中心亚商学院基地


    (以上为珠三角面授班开课点,学员可以选择最近的上课点)


    香港亚洲商学院收费标准:


    MBA面授班:29800元


    MBA远程班:19600元


    EMBA面授班:39800元


    EMBA远程班:21600元


    (以上学费包含所有的学习费用,中途没有任何学费产生,不包含个人上课产生的交通费、餐费)



  • 格力董小姐手机 2(全网通)

    主屏尺寸:6英寸

    主屏分辨率:2560x1440像素

     

    后置摄像头:1600万像素

    前置摄像头:800万像素

     

    电池容量:4000mAh

    电池类型:不可拆卸式电池

     

    核心数:四核

    内存:4GB

     

    基本参数

    上市日期 2016年06月 
    手机类型 4G手机,3G手机,智能手机,平板手机,快充手机,游戏手机 
    操作系统 Android 6.0 
     
     

    屏幕

    触摸屏类型 电容屏,多点触控 
    主屏尺寸 6英寸 
    主屏材质 TFT材质(IPS技术) 
    主屏分辨率 2560x1440像素 
    屏幕像素密度 490ppi 
    窄边框 3.64mm 
    屏幕占比 72.92% 
    其他屏幕参数 2.5D玻璃 
     

     

    硬件

    手机性能天梯图>> CPU型号 高通 骁龙820(MSM8996) 
    CPU频率 2.2GHz 
    核心数 四核 
    RAM容量 4GB 
    ROM容量 64GB 
    电池类型 不可拆卸式电池 
    电池容量 4000mAh 
    充电时间 快速充电 
     
     

    网络与连接

    4G网络 移动TD-LTE,联通TD-LTE,联通FDD-LTE,电信TD-LTE,电信FDD-LTE 
    3G网络 移动3G(TD-SCDMA),联通3G(WCDMA),联通2G/移动2G(GSM) 
    SIM卡 双卡,Nano SIM卡 
    WLAN功能 单频WIFI,IEEE 802.11 b/g/n 
    导航 GPS导航 
    连接与共享 红外遥控,WLAN热点,蓝牙 
    机身接口 3.5mm耳机接口,USB Type-C接口 
     
     

    摄像头

    摄像头类型 双摄像头(前后) 
    后置摄像头 1600万像素 
    前置摄像头 800万像素 
    传感器类型 CMOS 
    闪光灯 LED补光灯 
    视频拍摄 720p(1280×720,30帧/秒)视频录制 
    拍照功能 数码变焦,自动对焦 
     
     

    外观

    造型设计 直板 
    机身颜色 金色 
    手机尺寸 166x82x8.0mm 
    手机重量 205g 
    操作类型 触控按键 
    其他外观参数 Zigbee智能家居芯片 
     
     

    更多功能与服务

    感应器类型 重力感应器,光线传感器,距离传感器 
    音频支持 支持MIDI/MP3/AAC等格式 
    视频支持 支持3GP/MP4等格式 
    图片支持 支持JPEG/EXIF等格式 
    多媒体技术 高通WCD9335音频芯片 
    常用功能 秒表,计算器,电子词典,备忘录,日程表,记事本,收音机 
    商务功能 飞行模式 
     
     

    手机附件

    包装清单 主机 x1
    充电器 x1
    数据线 x1
    耳机 x1
    贴膜 x1
    取卡针 x1
    手机保护套 x1
     

     

    深圳市佰猫科技集团有限公司

    招商热线:1380 2561 325

    招商地址 深圳市龙岗区龙岗街道龙岗大道(龙岗段)6035号金融大厦8楼

  • 四川幼师学校幼师培训,教师不仅要爱漂亮的孩子,也爱长相一般甚至丑陋和有缺陷的孩子;不仅爱聪明的孩子,也爱发展速度缓慢甚至迟钝的孩子;不仅爱听话的孩子,也爱调皮的甚至有许多问题行为的孩子;不仅爱家庭背景富裕、社会地位高的孩子,也爱平民甚至家境贫寒的孩子。童心是教师通往每个孩子的心灵世界的桥梁。一位好的幼儿教师往往是幼儿的“忘年交”,是幼儿群体中的一分子,他们保持了一颗纯真的童心,积极参与孩子们的各种活动,和他们一起游戏、讲故事、说悄悄话。在这种平等的关系中,教师就能够和幼儿之间产生情感上的交流,就会在幼儿内心引起“共鸣”,同时教师会在生活中发现每一个孩子身上的“闪光点”,从而更加爱孩子,由此,教师的教育工作就有了良好的基础。

    网店第5年
    11226180
  • 趋势一:联合办学 席卷全球。

    不同国家商学院联合举办的EMBA项目越来越多,实力越来越强;;中外合办EMBA项目时,中国商学院将争取扮演更大角色。

    趋势二:招生规模 高速递增

    EMBA招生规模在全球稳定增长,在中国则增长迅猛;EMBA报考者渐趋年轻化;商学院放宽招生条件以刺激招生规模,凸显出招生和教学的质量问题。

    趋势三:生源结构 兼收并蓄

    生源结构国际化、职业多元化、女性学员增多;中国成为生源拓展的热土。

    趋势四:师资力量 海纳百川

    商学院日益重视兼具深厚的学术和实践功底的教授;打造国际化的教授队伍。

    趋势五:学费价位 水涨船高

    趋势六:课程形式 异彩纷呈

    商学院自办的EMBA项目 ,运用多种课程形式;跨国合办的EMBA项目,日益重视本地化课程和行业性课程。

    趋势七:案例研究 立足本土

    许多EMBA项目纷纷“抛弃”哈佛案例,中国EMBA项目努力建设中国特色的案例。

    趋势八:E-Learning 正成潜流

    越来越多的EMBA项目采用电子化学习(E-Learning)的技术和授课方式,不过,它只是面授方式的辅助手段,还不能成为主要方式。

    趋势九:服务学员 做好细节

    趋势十:校政企合作 三管齐下

    在西方,私立商学院的EMBA项目,比公立商学院发展得更好;中国则不同,有了政府和企业的帮助,EMBA项目的发展才更好。



  • 前言:什么是积分入户?积分入户简言之就是积分达到100分就可入深户。

    2019入深户你必须具备的基本条件:

    1、社保

    这是一个重要的基本条件,想入深户必须要有社保,达到个人申报要求的,社保也必须连续6个月以上。没有达到个人申报要求的,社保可以算积分,五险一年是7分,三险一年是4分。封顶可以积30分。其实在深圳除了入深户上,社保还在其它方面限制了我们生活便利,为了长远打算,建议来深工作者,最重要的一件事就是交上深圳社保。


    2、年纪

    入深户必须要认识一个问题,年纪越小,越容易入,越容易考。入深户的政策也是偏向年纪小的。35岁以内还可积5分,35岁至39岁之内无积分。40岁开始,每年减2分,45岁以后对于大部分人来说己没有机会入深户了。不要小看那几分,入深户差1分都不行的,有时候就是卡在几分上。而要花大价钱来补分。



    3、学历


    个人认为,学历是入户的关键,为什么说学历是入户的关键呢?南新教育朱老师告诉你全日制大专以上学历的人群,直接入户。完胜没学历而想入户的人群,简单直接快速!

    积分入户一百分,学历占积分的百分之六十以上。如果你走积分入户这条路,没有学历,你这条路基本是行不通的。凑一百分,没有学历,真的很难凑够。如果你也有小孩将需要申请深圳公办小学的学位,建议你尽快办好深户,或者至少也可以先提升一下自己的



        综上所述,2019年申请入深户条件不够还是有办法的,如果你的条件达到了转入深圳户口办理的要求,那么你要抓紧机会办理深圳户口,因为深圳户口的办理条件每一年都是不一样的,也许你今年的条件达到了,下一年想办理的时候,你的条件可以达不到办理深圳户口的条件了。


  • 1. 宾夕法尼亚大学沃顿商学院

    2. 芝加哥大学布斯商学院

    3. 西北大学凯洛格商学院

    4. 华盛顿大学奥林商学院

    5. 哥伦比亚大学商学院

    6. 纽约大学斯特恩商学院

    7. 加州大学洛杉矶分校安德森商学院

    8. 密歇根大学罗斯商学院

    9. 康奈尔大学约翰逊商学院

    10. 德克萨斯大学奥斯汀麦库姆斯商学院


  • 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态. 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支. 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
    亚里士多德把数学定义为“数量数学,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。” 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。
    为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
  • 数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35073853
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。 以上情况表明,中华人民共和国成立以后,数学教育在数量和质量上都发生了显著变化,逐步发展提高。但也存在一些问题,如:必修课太重,不少课程要求过专过高,教学制度又过分要求划一,未能因材施教,导致学生学习负担过重,基础不牢,加以对理论和实践有时理解得不全面,工作中有摇摆,使数学教育的发展受到影响。尽管如此,这段时期的数学教育成就还是很大的。一般数学人才的培养已能立足于国内了。
    网店第1年
    35097984
  • 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入. 图中数字为国家二级学科编号。
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    利用计算的方法来代替人们思维中的逻辑推理过程,这种想法早在十七世纪就有人提出过。莱布尼茨就曾经设想过能不能创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出正确的结论。由于当时的社会条件,他的想法并没有实现。但是他的思想却是现代数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱 [3] 。 1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。 十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《算术基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。
    数理逻辑包括哪些内容呢?广义上,数理逻辑包括集合论、模型论、证明论、递归论。这里我们先介绍它的两个最基本的也是最重要的组成部分,就是“命题演算”和“谓词演算”。命题演算是研究关于命题如何通过一些逻辑连接词构成更复杂的命题以及逻辑推理的方法。命题是指具有具体意义的又能判断它是真还是假的句子。 如果我们把命题看作运算的对象,如同代数中的数字、字母或代数式,而把逻辑连接词看作运算符号,就象代数中的“加、减、乘、除”那样,那么由简单命题组成复合命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。这样的逻辑运算也同代数运算一样具有一定的性质,满足一定的运算规律。例如满足交换律、结合律、分配律,同时也满足逻辑上的同一律、吸收律、双否定律、狄摩根定律、三段论定律等等。利用这些定律,我们可以进行逻辑推理,可以简化复和命题,可以推证两个复合命题是不是等价,也就是它们的真值表是不是完全相同等等。
    网店第1年
    35084379
  • 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
    中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的: 【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式)。 【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。 【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。 【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。 【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。 【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。
    现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。 与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
  • 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入. 图中数字为国家二级学科编号。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。
    由于各国的情况存在诸多差异,在高中数学课程的具体安排上,各国有不同的着重点。例如,英国的高级水平(A-level)数学,主要面向对数学要求较高的理工大学考生,此种数学班的学生需要学习纯数学,统计学,理论力学等内容。韩国开办面向天才生的理科高中,密码学和高等字符串的理论理科高中的学习内容。印度有良好的计算技能传统,甚至文盲的蔬菜小贩也有出色的算术运算技能。为了保持这一善于计算的传统,他们在当今数学教学中仍然不允许使用计算器。
    网店第1年
    35073853
  • 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。 除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。
    一.古埃及数学 埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。 公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。 现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。埃及算术主要是加法,而乘法是加法的重复。他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是 1的分数)的和。莱因德纸草书用很大的篇幅来记载2/n(n从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。 总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 二.美索不达米亚数学 西亚美索不达米亚地区(即底格里斯河与幼发拉底河流域)是人类早期文明发祥地之一。一般称公元前19世纪至公元前6世纪间该地区的文化为巴比伦文化,相应的数学属巴比伦数学。这一地区的数学传统上溯至约公元前二千年的苏美尔文化,后续至公元1世纪基督教创始时期。对巴比伦数学的了解,依据于19世纪初考古发掘出的楔形文字泥板,有约300块是纯数学内容的,其中约200块是各种数表,包括乘法表、倒数表、平方和立方表等。大约在公元前1800~前1600年间,巴比伦人已使用较系统的以60为基数的数系(包括60进制小数)。由于没有表示零的记号,这种记数法是不完善的。 巴比伦人的代数知识相当丰富,主要用文字表达,偶尔使用记号表示未知量。 在公元前1600年前的一块泥板上,记录了许多组毕达哥拉斯三元数组(即勾股数组)。据考证,其求法与希腊人丢番图的方法相同。巴比伦人还讨论了某些三次方程和可化为二次方程的四次方程。 巴比伦的几何属于实用性质的几何,多采用代数方法求解。他们有三角形相似及对应边成比例的知识。用公式 (с为圆的周长)求圆面积,相当于取π=3。 巴比伦人在公元前 3世纪已较频繁地用数学方法记载和研究天文现象,如记录和推算月球与行星的运动,他们将圆周分为360度的做法一直沿用至今。 三.玛雅数学 对于玛雅数学的了解,主要来自一些残剩的玛雅时代石刻。对这些石刻上象形文字的释读表明:玛雅人很早就创造了位值制的记数系统,具体记数方式又分两种:第一种叫横点记数法;第二种叫头形记数法。横点记数法以一点表示1,以一横表示5,以一介壳状 表示0,但不是0符号。 迄今所知道的玛雅数学知识就是如此,其中只显示加法和进位两种。关于形的认识,只能从玛雅古建筑中体会到一些。这些古建筑从外形看都很整齐划一,可以判断当时玛雅人对几何图形已有一定的知识。 四.印度数学 印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。 印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。 由几何计算导致了一些求解一、二次代数方程问题,印度用算术方法给出求解公式。 耆那教的经典由宗教原理、数学原理、算术和天文等几部分构成,流传下来的原始经典较少,不过流传一些公元前5世纪至公元后2世纪的注释。 公元773年,印度数码传入阿拉伯国家,后来欧洲人通过阿拉伯人接受了,成为今天国际通用的所谓阿拉伯数码。这种印度数码与记数法成为近世欧洲科学赖以进步的基础。中国唐朝印度裔天文历学家瞿昙悉达于718年翻译的印度历法《九执历》当中也有这些数码,可是未被中国人所接受。 由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。
    培养学生的学科意识 ICME 9的初中数学教学组认为,对于11-16岁的少年儿童,数学课程,相关的教材和教学活动,应该巧妙地帮助学生完成从儿童到成人行为的转变。初中数学课程既要考虑与小学课程的衔接,又要考虑与高中课程的衔接。 在数学中,符号是必不可少的语言。它是人类思维与交流的工具,它能够清晰而简明地表达数学思想和规律。数学符号涉及多个数学分支,在科学技术中,利用数学符号,能有效地寻求模式,进行概括。借助于数学符号,能把有关问题规范化。因此,数学课程要帮助学生树立正确的学科观念,建立正确的符号意识。初中生在数学学习中,要接触大量数学符号,因此,在概念的教学中,要注意符号的自然引入。在代数中要讲请算理与算法,在几何中要弄清图形的特征性质,正确揭示符号所反映的的关系与规律。 帮助学生掌握数学思想方法 高中数学课程面临重大改革,美国数学教师协会(NCTM)於2000年制订发表的"学校数学课程的原则与标准"受到举世关注。高中生应该学习范围宽广的函数知识,包括三角函数,指数函数,等等。在几何,度量,数据分析,概率等方面,学生应该巩固和扩展他们在低年级所学的知识。不断发展他们在数学方面,特别是在问题解决,数学表述,推理论证等方面的熟练程度。ICME 9的高中数学教学组一致认为,数学思想方法的教学应该成为高中数学课程的重要部分。数学建模思想受到与会专家的普遍重视。
    网店第1年
    35097984
  • 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
    纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶—斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。
    高中数学课程面临重大改革,美国数学教师协会(NCTM)於2000年制订发表的"学校数学课程的原则与标准"受到举世关注。高中生应该学习范围宽广的函数知识,包括三角函数,指数函数,等等。在几何,度量,数据分析,概率等方面,学生应该巩固和扩展他们在低年级所学的知识。不断发展他们在数学方面,特别是在问题解决,数学表述,推理论证等方面的熟练程度。ICME 9的高中数学教学组一致认为,数学思想方法的教学应该成为高中数学课程的重要部分。数学建模思想受到与会专家的普遍重视。
    网店第1年
    35083696
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了. 更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统. 古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究. 西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念. 17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
    网店第1年
    35082213
  • 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用
    具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入. 图中数字为国家二级学科编号。
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    网店第1年
    35084379
  • 排列组合概率题解题技巧

    排列、组合、概率与错位公式


    「数量关系」板块中的「排列、组合、概率」方面的题目每年必考、国考省考都会考,而此类题的难度一般较高,因此掌握它们的解题方法是非常有必要的。


    总体来说,此类题目的公式非常简单,大致只有三个半,即排列公式、组合公式、概率公式和错位排列公式。


    (1)排列公式


    A(总个数,选出排列的个数)


    特点是每个个体有「排列」的独特性,谁先选、谁后选会影响结果。


    例如5个人选3个排队,5个项目选3个先后完成,两种情况的运算均为:


    A(5,3)=5×4×3=60种方式


    (2)组合公式


    C(总个数,选出组合的个数)


    特点是每个个体没有「排列」的独特性,谁先选、谁后选都不影响结果。


    例如5个人选3个参加比赛,5个项目选3个于今年内完成(不要求完成顺序),则运算均为:


    C(5,3)=C(5,2)


    =5×4÷(1×2)=10种方式


    注意C(5,3)一般要转换为C(5,2),其原因是:


    C(5,3)=5×4×3÷(1×2×3)=5×4÷2,中间要约去3,因此可能会多花两三秒钟,故要尽量节约时间。


    注:排列组合公式很好记忆,由于公考中考察的「排列组合概率」题的数值不会很大,因此在实际考试中,直接在纸上用笔列草稿即可:


    总数×(总数-1)×(总数-2)×……


    一直让相乘数字的个数达到「选出的个数」,即为排列公式;


    再从1开始乘,乘到「选出的个数」,用排列公式得出的结果除以该数即为「组合公式」。


    关于「排列组合」,最标准的公式如下:


    这两个公式很优美,不过大家实际做题时没必要这么列,毕竟公考中的n和m都不会很大,一边列公式一边约分(尤其是对于组合公式)即可。


    只要熟练掌握「排列组合」公式,理解两者的不同,就很容易解出答案。


    (3)概率公式


    发生某情况的概率=发生该情况的个数/总情况的个数


    概率公式极为简单,也很好理解,而「总情况个数」一般也能快速得出,此类题的解题关键是「发生该情况的个数」。


    (4)错位排列公式


    此类公式只能算「半个公式」,因为它基于排列组合公式,但公式的步骤又很难理解,而且它虽然在公考中出现过,但出现次数极少,因此大家只要记住它的描述和数值即可。


    错位排列的描述为「全部错位」,例如:


    一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?


    上面这道题就是「错位排列」的最初源头,类似描述包括「5个部门5个人员重新分配,都不回到原部门」等。


    「错位排列」的数据很好记忆,总共只有3个(用D表示):


    D1= 0,D2= 1,D3=2,D4= 9,


    D5= 44,D6= 265,D7= 1854。


    D1、D2太小,D7及以上太大,一般不会考;D3可直接从纸上列出情况,很好理解。只要记住D4~D6的结果即可。


  • 许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因. 许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身
  • 数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”). 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献. 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
    数学是一门国际性的学科,对各个方面都要求严谨。 我国规定初等及以上的数学已可以算作是科技类文献。 我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”. 在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.
    各校建系初期,实施的数学教育差别很大,后来教育部才对必修课作了原则规定。主要授课教师多半是归国留学生,所用教材,除少数自编者外,多数是外文本或其中译本。从课程设置看,高等院校的数学教育水平不低,但各校的教学质量差异不小。数学系学生,每校每年级一般都只有少数几个人。 1931年清华大学开始培养数学研究生,后继者有浙江大学、中央大学、北京大学以及抗日战争期间由北京大学、清华大学、南开大学组成的(昆明)西南联合大学,数学的研究工作也比较集中在这几所学校。其中清华大学、浙江大学、武汉大学等还出版了刊物,登载数学论文。
    从19世纪20年代后期起,浙江大学数学系就开始采用讨论班的形式来培养学生独立 快乐的幼儿数学教育 快乐的幼儿数学教育 工作能力和从事科研工作能力;其他如西南联合大学也曾采用过。到了50年代,结合专门组教学,这种作法得到进一步推广,各主要大学数学系都逐步开展了科学研究工作,并招收了研究生。由于国内培养的数学人才不断增加,教师队伍逐渐改变了过去主要依靠归国留学生的局面,由教育部组织编写的以及个人编写的教材也逐渐取代了外国教材,它们一般较结合本国实际。1957年以后,一些学校开展了应用数学方面的研究,增设了计算数学专业或专门组,开设了如运筹学等课程,概率统计等课程的开设更为普遍,培养了有关方面的人才。理、工等科系的学生,一般也学习一定份量的高等数学课程。
    网店第1年
    35073853
  • 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。 日本数学教育协会主席藤田宏教授认为,数学史上有三大高峰:1.公元前三世纪诞生的欧氏几何学;2. 17-18世纪微积分的发现和发展;3.现代公理化数学的起源。当代数学的统一的进步,包括计算机科学的进步,可以称为数学史上的第四个高峰。数学和科学技术的这些发展,应该反映在数学教育中。 发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    网店第1年
    35097984
  •   空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。

      数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.

      另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.

      万物皆数。——毕达哥拉斯

      几何无王者之道。——欧几里德

      数学是上帝用来书写宇宙的文字。——伽利略

      我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596—1650)

      数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉

      数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯

      这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827)

      如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857)

      庞加莱(Poincare)猜想(已经被证明)如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

  • 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出
    主条目:数学基础 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    西方数学简史 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
    教学方法 任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35081339
  • 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学 《从数学教育到教育数学》 《从数学教育到教育数学》 生的水平和兴趣来设置。 在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分。在美国,美国数学教师国家委员会制定了一系列文档,最近的有学校数学的原则和标准,为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35083696
  • 空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    数理逻辑 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
    哥德巴赫猜想 在1742年6月7日给欧拉的信中,哥德巴赫提出了以下猜想:a) 任一不小于6之偶数,都可以表示成两个奇质数之和;b) 任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。现在通常把这两个命题统称为哥德巴赫猜想。把命题"任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作“a+b”,哥氏猜想就是要证明“1+1”成立。1966年陈景润证明了“1+2”的成立,即“任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和”。
    在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。 数学教育图书 数学教育图书 这些目标包括: 教授给所有学生的数字技巧。 教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。 早期的抽象代数概念教育(例如集合和函数)。 选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。 选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。 教授给希望以科学为职业的学生的高等数学。 数学教育的方式和变化的目标一致。
    网店第1年
    35082213
  • 空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    利用计算的方法来代替人们思维中的逻辑推理过程,这种想法早在十七世纪就有人提出过。莱布尼茨就曾经设想过能不能创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出正确的结论。由于当时的社会条件,他的想法并没有实现。但是他的思想却是现代数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱 [3] 。 1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。 十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《算术基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。
    数理逻辑包括哪些内容呢?广义上,数理逻辑包括集合论、模型论、证明论、递归论。这里我们先介绍它的两个最基本的也是最重要的组成部分,就是“命题演算”和“谓词演算”。命题演算是研究关于命题如何通过一些逻辑连接词构成更复杂的命题以及逻辑推理的方法。命题是指具有具体意义的又能判断它是真还是假的句子。 如果我们把命题看作运算的对象,如同代数中的数字、字母或代数式,而把逻辑连接词看作运算符号,就象代数中的“加、减、乘、除”那样,那么由简单命题组成复合命题的过程,就可以当作逻辑运算的过程,也就是命题的演算。这样的逻辑运算也同代数运算一样具有一定的性质,满足一定的运算规律。例如满足交换律、结合律、分配律,同时也满足逻辑上的同一律、吸收律、双否定律、狄摩根定律、三段论定律等等。利用这些定律,我们可以进行逻辑推理,可以简化复和命题,可以推证两个复合命题是不是等价,也就是它们的真值表是不是完全相同等等。
    命题演算的一个具体模型就是逻辑代数。逻辑代数也叫做开关代数,它的基本运算是逻辑加、逻辑乘和逻辑非,也就是命题演算中的“或”、“与”、“非”,运算对象只有两个数 0和 1,相当于命题演算中的“真”和“假”。逻辑代数的运算特点如同电路分析中的开和关、高电位和低电位、导电和截止等现象完全一样,都只有两种不同的状态,因此,它在电路分析中得到广泛的应用。 利用电子元件可以组成相当于逻辑加、逻辑乘和逻辑非的门电路,就是逻辑元件。还能把简单的逻辑元件组成各种逻辑网络,这样任何复杂的逻辑关系都可以有逻辑元件经过适当的组合来实现,从而使电子元件具有逻辑判断的功能。因此,在自动控制方面有重要的应用。谓词演算也叫做命题涵项演算。在谓词演算里,把命题的内部结构分析成具有主词和谓词的逻辑形式,由命题涵项、逻辑连接词和量词构成命题,然后研究这样的命题之间的逻辑推理关系。
    网店第1年
    35084379
  • 排列组合概率解题思路——分类法


    根据上面的描述可发现,「排列组合」题的公式一点都不难,而且也很好记忆。此类题的难点主要在于「确定其属于什么类别」。


    在实际考试中,「排列」「组合」「概率」三者经常结合在一起,往往一道求概率的题,其分情况和总情况都需要用「排列组合公式」去求得结果。


    根据公考出现的题目,可将其大致分为以下几类(有时候下面几类会再次结合):


    (1)加法类


    求某事物的概率,该事物有多种情况成立,则总概率等于每种情况成立时的概率相加。


    求某情况的总数,该情况分为多种分情况,则总情况等于所有情况的和。


    (2)乘法类


    此类题目的描述和加法类有所类似,区别的关键在于某概率成立/某情况成立时和分概率/分情况的关系。


    求某事物的概率,该事物分为多种情况,当所有情况成立时才满足题干要求,则总概率等于每种情况成立时的概率相乘。


    求某情况的总数,该情况为多种分情况的总体组合,每种分情况都有自己的个数,则总情况等于所有分情况相乘。


    用一个简单例题来区别「加法类」和「乘法类」的区别:


    甲乙下棋(没有平局),甲每盘战胜乙的几率为40%,三局两胜,求甲三局后战胜乙的几率。


    此时可将其分为「甲3胜」和「甲2胜1负」两种情况,然后将两种情况相加即可,即:


    (40%×40%×40%)+C(3,1)×(40%×40%×60%)


    甲乙下棋(没有平局),甲每盘战胜乙的几率为40%,三局两胜,求甲通过「先输一局、再赢两局」这种方法战胜乙的几率。


    此时每盘情况都固定,则结果为:


    60%×40%×40%


    此类题在没有概率的「排列组合」题中也存在。例如甲乙两个部门选3人参加活动:


    如果要求是「分情况」,例如共有「甲1乙2」「甲2乙1」「甲3乙0」3种情况,则需要分不同情况得出结果后相加。


    如果要求是「分部门」,例如「甲1乙2」的形式固定下来了,则总情况即为「甲1」的情况数×「乙2」的情况数。


    很多「排列组合概率」的难题可能同时出现两种情况,只要能将其分类分清楚了,其实这种题目并不难。


    (3)特殊类(除错位排列)


    某些难题可能会考察特殊情况的排列组合,例如:


    「植树时在马路两侧植树且第一棵树固定」


    「2人一组,共有多组参加活动」


    「在圆桌上参加宴会」


    「有的人可选择任何位置,有的人只能选择部分位置(如住旅馆只能住在1层等)」


    这些情况本质上和「排列组合」公式以及「加法、乘法」的分类是想通的,除了「错位排列」之外,其他题目都是非常好理解的,只要根据题干描述进行分类即可,在接下来的真题讲解中都会详细分析。


    需要注意,如果题目看似是在求「排列组合概率」,但选项和题干数字都很小,那很可能需要使用「逐个列出」等方法去解题。关于这方面的解析,各位小伙伴可参考之前的内容:「数量关系」解题技巧(7)——整消法。

  • 数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。 直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。
    正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
    迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因. 许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身
  • 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
    任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括: 经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得原本,它被作为演绎推理的范式来教授。 死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。 习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。 问题求解- 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从词问题到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。 新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。 历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。 这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。
    网店第1年
    35073853
  • 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    贝赫(Birch)和斯维讷通—戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    网店第1年
    35097984
  • 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支. 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分. 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
    中国高等学校是全国科学研究的一个重要的方面军,数学研究也是这样,特别是 快乐的幼儿数学教育 快乐的幼儿数学教育 近十年来有了较全面的发展与提高,一些大学还设立了数学研究所。高级数学人才的培养也随之逐渐能立足于国内,正式建立了学位制。数学方面已在基础数学、计算数学、应用数学、概率论与数理统计、运筹学与控制论、数学教育与数学史等方面培养博士研究生。1983年在中国第一批18位接受本国博士学位的研究生中,获得数学博士学位的就有12人。必须指出,中国科学院数学各方面研究所,在培育人才,包括培养研究生方面,也起了重要作用。1966年以前曾向少数国家派遣了数学方面的留学生和进修教师,1978年起派出人员大量增加。还邀请了许多国外数学家前来讲学,中国数学家出国讲学和参加国际数学学术会议的就更多了。中外学术交流对中国数学事业的繁荣起着很好的作用。
    网店第1年
    35082170
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”). 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献. 基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态. 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
    数学基础 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献. 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
    P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
    网店第1年
    31335627
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    1:数学史 2:数理逻辑与数学基础 a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科   3:数论   a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科   4:代数学   a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科   5:代数几何学   6:几何学   a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科 7:拓扑学   a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科   8:数学分析 a:微分学 b:积分学 c:级数论 d:数学分析其他学科
    具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入. 图中数字为国家二级学科编号.
    西方数学简史 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了. 更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统. 古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
    网店第1年
    35060673
  • 数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    这些人曾在一生中某一阶段教授数学,但他们在其他方面更为著名:- Lewis Carroll, 英国作家Charles Dodgson的笔名,曾在牛津基督教堂讲授数学 道尔顿, 英国化学家和物理学家,曾在曼彻斯特,牛津和约克的学校和大学教数学。 Tom Lehrer, 美国歌曲作家和讽刺作家,曾在哈佛和麻省理工学院教数学。 Georg Joachim Rheticus,奥地利绘图家,哥白尼的学生,曾在Wittenberg大学教数学。 Edmund Rich, 13世纪坎特伯雷大主教,在牛津和巴黎的大学教过数学。 Archie Williams, 美国运动员,奥运金牌得主,在加里福尼亚高中教过数
    除了在国内培养数学人才外,还通过一些渠道派遣留学生,例如利用中美庚款、中英庚款和中法庚款公开考试派送的留学生中,都有数学名额。30年代还曾邀请少数外国数学家如 W.F.奥斯古德、N.维纳、J.(-S.)阿达马等来华讲学。 从辛亥革命到中华人民共和国成立,是中国现代数学教育的奠基时期,不少老一辈数学家如姜立夫、熊庆来、陈建功等克服重重困难,艰苦创业,培养了一批数学人才;数量虽然不多,但对于使现代数学在中国土壤上生根,作出了宝贵贡献。 中华人民共和国成立后,在人民政府的集中领导下,采用了苏联的教育制度,数学教育也经历了巨大变革。经过1952年的院系调整,师范院校和综合大学都设立了数学系,全国有了统一制订的教学计划和教学大纲,广泛引进了苏联教材,各校必修课的设置及其内容规范化了,保证了一定水平。数学基础课一般都设了习题课,对学生的帮助更为具体。师范院校的数学专业在基础课的设置上,与综合大学的数学专业相近,并增设教育学、心理学、数学教学法及教育实习等课和教学环节。综合大学的数学专业一度在最后一年至一年半的时间里分为若干专门组,如代数、数论、几何、拓扑、函数论、泛函分析、微分方程、概率论与数理统计等,学生能接触到一些现代数学的前沿工作。后来专门组撤销,课程更多样化了。
    从1966年开始的“文化大革命”,数学教育受到严重挫折。1977年后,经济、政治、科学、教育各方面都先后提出了改革的方针和措施;实事求是精神的发扬,学校自主权的加强,教学制度的灵活,选修课的增加,使各校有条件分别发扬其优势,形成自己的特色。由于明确提出了“大力发展应用研究,重视基础研究”的方针,纯粹数学和应用数学各得其所,长期存在的关于理论和实践关系的认识分歧终于澄清。除了基础数学、计算数学和应用数学专业外,综合大学和师范院校还设了数理逻辑、控制理论、系统科学、信息科学、概率论与数理统计、运筹学、经济数学等专业,许多工科院校也建立了应用数学专业。高等学校理、工、农、医以至经济、管理方面等科系的学生,都学习比过去更多的高等数学方面的课程。
    网店第1年
    35060676
  •   基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

      代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

      直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

      现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)

      数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.

      具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).

      就纵度而言,在数学各自领域上的探索亦越发深入.

      图中数字为国家二级学科编号。

      亚里士多德把数学定义为“数量数学,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。[8]许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”

      数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。

      数学逻辑的早期定义是本杰明·皮尔士(Benjamin Peirce)的“得出必要结论的科学”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。

      P(多项式算法)问题对 NP(非多项式算法)问题

      在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。

      与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

  • 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
    杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
    数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
    在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。 数学教育图书 数学教育图书 这些目标包括: 教授给所有学生的数字技巧。 教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。 早期的抽象代数概念教育(例如集合和函数)。 选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型。 选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例。 教授给希望以科学为职业的学生的高等数学。 数学教育的方式和变化的目标一致。
    网店第1年
    35081339
  • 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……). [1] 数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用. 具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入.
    直觉主义定义,从数学家L.E.J. Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。 正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    中国数学发展史 mathematics eduction in China 有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。明代算科考试亦以这些教材为准(见中国数学史)。 近现代的初等数学教育,可以说是在晚清(1903)颁布癸卯学制,废除科举,兴办小学、中学后才开始的。当时小学设算术课,中学设数学课(包括算术、代数、几何、三角、簿记)。民国初年(1912~1913)公布壬子癸丑学制,中学由五年改为四年,数学课程不再讲授簿记。执行时间最久的是1922年公布的壬戌学制,将小学、中学都改为六年,各分初高两级,初小四年,高小二年,初高中皆三年。初中数学讲授算术、代数、平面几何,高中数学讲授平面三角、高中几何、高中代数、平面解析几何(高中曾分文理两科,部分理科加授立体解析几何和微积分初步),这个学制基本沿用到1949年。中华人民共和国成立后,中小学的教育进行了改革,学制大都改为小学六年,初高中各三年,初中逐步取消算术课。50年代高中数学一度停授平面解析几何,后又恢复并增授微积分初步以及概率论和电子计算机的初步知识。 幼儿数学教育 幼儿数学教育 中国近代高等数学教育,也是从清朝末年开始的。1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。1898年戊戌变法中,京师大学堂成立,这是中国近代第一个国立大学。1902年,同文馆并入京师大学堂。
    发展学生的数学能力 发展学生的科学素质,培养学生的数学能力,是数学教育的重要目标之一。推理能力 数学教育图书 数学教育图书 是重要的数学能力,它与探索能力,实践能力相辅相成。这些能力要同时培养。巴西的努纳斯教授认为,在小学里,儿童能够通过利用数学工具,在问题解决的活动中进行学习,并建立起符合他们年龄特征的推理系统;相反,如果儿童学习有关数学工具,但不把它结合到推理活动中,那么,他们解决问题的思维就将受到束缚。 ICME 9的小学数学教学组着重研究了如下专题:(1)理解和检查儿童的数学思维;(2)努力发展儿童的数学能力;(3)对教师在理解、评价和发展儿童数学能力方面给予支持。
    网店第1年
    35083696
  • 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了. 更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统. 古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究. 西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念. 17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。 数学教育图书 数学教育图书 在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。 第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。 在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。 这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。 在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。 到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。
    P(多项式算法)问题对 NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。 与此类似的是,如果某人告诉你,数字13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
    网店第1年
    35082213
  • 数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
    正式主义定义用其符号和操作规则来确定数学。 Haskell Curry将数学简单地定义为“正式系统的科学”。[33]正式系统是一组符号,或令牌,还有一些规则告诉令牌如何组合成公式。在正式系统中,公理一词具有特殊意义,与“不言而喻的真理”的普通含义不同。在正式系统中,公理是包含在给定的正式系统中的令牌的组合,而不需要使用系统的规则导出。
    命题涵项就是指除了含有常项以外还含有变项的逻辑公式。常项是指一些确定的对象或者确定的属性和关系;变项是指一定范围内的任何一个,这个范围叫做变项的变域。命题涵项和命题演算不同,它无所谓真和假。如果以一定的对象概念代替变项,那么命题涵项就成为真的或假的命题了。命题涵项加上全称量词或者存在量词,那么它就成为全称命题或者特称命题了。
    数理逻辑这门学科建立以后,发展比较迅速,促进它发展的因素也是多方面的。比如,非欧几何的建立,促使人们去研究非欧几何和欧氏几何的无矛盾性。 集合论的产生是近代数学发展的重大事件,但是在集合论的研究过程中,出现了一次称作数学史上的第三次大危机。这次危机是由于发现了集合论的悖论引起。什么是悖论呢?悖论就是逻辑矛盾。集合论本来是论证很严格的一个分支,被公认为是数学的基础。 1903年,英国唯心主义哲学家、逻辑学家、数学家罗素却对集合论提出了以他名字命名的“罗素悖论”,这个悖论的提出几乎动摇了整个数学基础。 罗素悖论中有许多例子,其中一个很通俗也很有名的例子就是“理发师悖论”:某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。那么就产生了一个问题:理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。这就产生了矛盾。 悖论的提出,促使许多数学家去研究集合论的无矛盾性问题,从而产生了数理逻辑的一个重要分支——公理集合论。
    网店第1年
    35084379
  • 繁琐的计算导致正确率变低


    【2017国考地市级卷66题/ 省级卷68题】小张需要在5个长度分别为15秒、53秒、22秒、47秒、23秒的视频片段中选取若干个,合成为一个长度在80~90秒之间的宣传视频。要求每个片段均需完整使用且最多使用一次,并且片段间没有空闲时段。


    小张最多可能做出多少个不同的视频?


    (A)6


    (B)12


    (C)18


    (D)24


    正确答案C,正确率50%,易错项B


    列出题干数据关系:


    ①5片段长度为15、53、22、47、23


    ②合成视频长度80~90


    ③片段完整、无空闲、最多使用一次,求视频种类数量


    由①②可知,小张需要选择几个视频片段,找出时间相加在80~90之间的组合。


    把几个数从大到小排列:53、47、23、22、15,首先从数53开始罗列所有的可能:


    53+47=100>90,排除


    53+23=76,76+(最小的)15=91>90,排除


    53+22+15=90,符合情况


    然后从47开始数:


    47+23=70,70+22=92>90,排除


    47+23+15=85,符合情况


    47+22+15=84,符合情况


    可以看出,符合情况的共三类,分别为:


    53+22+15=90


    47+23+15=85


    47+22+15=84


    根据③可知,每个视频片段放在不同的位置都是不同的视频,即本题适用排列公式(A),不适用组合公式(C),可得视频数为:


    A(3,3)+A(3,3)+A(3,3)


    =6+6+6=18个,C选项正确。


    此类计算量大的题目一定要有耐心才能解得正确答案,需要注意本题适用于排列公式。


    虽然这道题的计算量不是很大,但计算较为繁琐,因此正确率不高。


  • 数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。——欧拉 数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来,但证明却隐藏的极深。数学是科学之王。——高斯 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 1749—1827) 如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 1789—1857) 数学的本质在于它的自由。——康托尔(Georg Ferdinand Ludwig Philipp Cantor 1845—1918) 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因(Christian Felix Klein 1849—1925)
    现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.
    霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    中国人物 祖冲之 祖冲之(10张) 事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已.又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣.——刘徽 迟疾之率,非出神怪,有形可检,有数可推.——祖冲之(429—500) 新的数学方法和概念,常常比解决数学问题本身更重要.——华罗庚 数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.——周海中 [4] 科学需要实验.但实验不能绝对精确.如有数学理论,则全靠推论,就完全正确了.这科学不能离开数学的原因. 许多科学的基本观念,往往需要数学观念来表示.所以数学家有饭吃了,但不能得诺贝尔奖,是自然的.数学中没有诺贝尔奖,这也许是件好事.诺贝尔奖太引人注目,会使数学家无法专注于自己的研究.——陈省身 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量.——丘成桐 看书和写作业要注意顺序.我们要养成良好的学习方法,尽量回家后先复习一下当天学习的知识,特别是所记的笔记要重点关照,然后再写作业,这样效果更佳.
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    反映科学技术的进步 最近十年来,科学技术迅猛发展,计算机,计算器,全球互联网逐步普及,学校数学承担着不断增加的责任。计算机的应用已经超越于解决问题的范围,他能给予人们研究科学的洞察力,由此导致对数学教育更高的要求。计算机在当今世界的作用完全可以与物理在二十世纪前半叶的作用相比美。通过计算机的模拟,能揭示未知的数学现象。它给数学如此大的推动,有如望远镜对于天文学,显微镜对于生物学一样。另一方面,计算机的巧妙应用,使得研究人员的学识和智慧得以充分发挥,人们能够相信,无论什么时候,数学教育都应该使用计算器和计算机。
    网店第1年
    35073853
  • 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托尔(1845—1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献。 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”。
    数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”. 严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或“证明”,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
    庞加莱(Poincare)猜想(已经被证明) 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    网店第1年
    35097984
  • 数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”). 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献. 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
    也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
    数学教育是一种社会文化现象,其社会性决定了数学教育要与时俱进,不断创新.数学教育中的教育目标、教育内容、教育技术等一系列问题都会随着社会的进步而不断变革与发展.数学教育改革的背景,至少有来自于九个方面的考虑:知识经济、社会关系、家庭压力、国际潮流、考试改革、科教兴国、深化素质教育、普及义务教育、科技进步。
    中国数学发展史 mathematics eduction in China 有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。明代算科考试亦以这些教材为准(见中国数学史)。 近现代的初等数学教育,可以说是在晚清(1903)颁布癸卯学制,废除科举,兴办小学、中学后才开始的。当时小学设算术课,中学设数学课(包括算术、代数、几何、三角、簿记)。民国初年(1912~1913)公布壬子癸丑学制,中学由五年改为四年,数学课程不再讲授簿记。执行时间最久的是1922年公布的壬戌学制,将小学、中学都改为六年,各分初高两级,初小四年,高小二年,初高中皆三年。初中数学讲授算术、代数、平面几何,高中数学讲授平面三角、高中几何、高中代数、平面解析几何(高中曾分文理两科,部分理科加授立体解析几何和微积分初步),这个学制基本沿用到1949年。中华人民共和国成立后,中小学的教育进行了改革,学制大都改为小学六年,初高中各三年,初中逐步取消算术课。50年代高中数学一度停授平面解析几何,后又恢复并增授微积分初步以及概率论和电子计算机的初步知识。 幼儿数学教育 幼儿数学教育 中国近代高等数学教育,也是从清朝末年开始的。1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。1898年戊戌变法中,京师大学堂成立,这是中国近代第一个国立大学。1902年,同文馆并入京师大学堂。
    网店第1年
    35082170
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。 其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká). 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”). 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献. 基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态. 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
    数学基础 为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献. 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
    数学是一门国际性的学科,对各个方面都要求严谨. 我国规定初等及以上的数学已可以算作是科技类文献. 我国规定文献类文章句号必须用“.”,数学采用的目的一是为此,二是为了避免和下脚标混淆,三是因为我国曾在国际上投稿数学类研究报告,人家却不采用,因为外国的句号大多不是“。”. 在证明题中,∵(因为)后面要用“,”,∴(所以)后面要用“.”,在一道大题中若有若干小问,则每小问结束接“;”,最后一问结束用“.”,在①②③④这样的序号后都应用“;”表连接,最后一个序号后用“.”表结束.
    网店第1年
    31335627
  • 数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
    1:数学史 2:数理逻辑与数学基础 a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科   3:数论   a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科   4:代数学   a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科   5:代数几何学   6:几何学   a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科 7:拓扑学   a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科   8:数学分析 a:微分学 b:积分学 c:级数论 d:数学分析其他学科
    具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学). 就纵度而言,在数学各自领域上的探索亦越发深入. 图中数字为国家二级学科编号.
    数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数. 另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
    网店第1年
    35060673